Orthogonalization

The basic idea about orthogonalization is that you would like to implement controls that only affect a single component of your algorithms performance at a time. For example, to address bias problems you could use a bigger network or more robust optimization techniques. You would like these controls to only affect bias and not other issues such as poor generalization. An example of a control which lacks orthogonalization is stopping your optimization procedure early (early stopping). This is because it simultaneously affects the bias and variance of your model.

Chain of assumptions in ML

Early stopping makes difficult for orthogonalization process.